3D printing -- also known as additive manufacturing -- turns digital 3D models into solid objects by building them up in layers. The technology was first invented in the 1980s, and since that time has been used for rapid prototyping (RP). However, in the last few years, 3D printing has additionally started to evolve into a next-generation manufacturing technology that has the potential to allow the local, on-demand production of final products or parts thereof. Already it is possible to 3D print in a wide range of materials that include thermoplastics, thermoplastic composites, pure metals, metal alloys, ceramics and various forms of food. Right now, 3D printing as an end-use manufacturing technology is still in its infancy. But in the coming decades, and in combination with synthetic biology and nanotechnology, it has the potential to radically transform many design, production and logistics processes.
This web page provides an overview of 3D printing technologies, as well as their present and likely future application. For a full list of 3D printer manufacturers, bureau services and other market players, please see my 3D Printing Directory. And for 300 pages on the subject, you may be interested in my book 3D Printing: Second Edition. THE RANGE OF TECHNOLOGIES 3D printing encompasses a wide range of additive manufacturing technologies. Each of these builds objects in successive layers that are typically about 0.1 mm thin. The methods used vary significantly, but all start with a computer aided design (CAD) model or a digital scan. This is then processed by 'slicing software' that divides the object into thin cross sections that are printed out one on top of the other. You can watch me go through the process in this video
1 comments:
commentsNice post
Reply